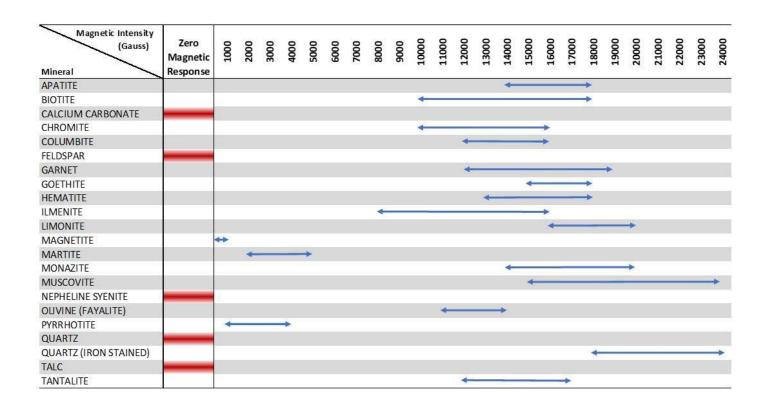


Minerals Testing Laboratory



Bunting offers laboratory testing for customers and their minerals samples using our magnetic separation equipment. The results of this testing can indicate the most suitable equipment to use in the industrial process. The analysed results provided to the customer enables the most cost-effective and suitable machinery to be specified. This is essential before committing to the capital spend of industrial sized equipment.

The laboratory employs scaled down versions of the equipment which give representative results to the industrial scale units. The samples can be analysed before and after processing using X-Ray Fluorescence and X-Ray Diffraction analysis for chemical assay and mineralogical identification to aid the development of a viable process route for each application.

Here are a selection of typical minerals that can be separated, along with the magnetic flux density required

Minerals Testing Laboratory

The range of laboratory scale magnetic separators include the following:

For Dry Mineral Processing	For Wet Mineral Processing	Equipment Used in Recycling		
Magnetic Disc Separator	Electro Magnetic Filter	Eddy Current Separator		
Rare Earth Roll Separator	Wet test slide	Stainless Steel Separator		
Induced Roll Separator	Wet High Intensity Separator	Electrostatic Separator		
Electrostatic Separator		Ferrite and Rare Earth Drums		
Ferrite and Rare Earth Drums		Rare Earth Roll Separator		

These products are used in mineral processing laboratories and as research tools at universities across the world. These types of laboratory scale equipment are available for sale.

Examples of magnetic separation equipment used in the test facility

For Dry Mineral Processing

Magnetic Disc Separator

Typical applications include:

- Processing of Tantalum Ore/ Coltan
- Concentration of Columbite-Tantalite, Ilmenite, Garnet, Monazite, Wolframite etc
- Processing of Tin-Ore
- · Purification of Quartz for glass manufacturing
- · Purification of abrasives

Rare Earth Roll Separator

Typical applications include processing:

- Feldspar
- Silica Sand
- High purity quartz
- Garnet
- Talo
- Abrasive and refractory minerals including Corundum
- Beach Sands (ilmenite, etc)
- Fine iron ores

Minerals Testing Laboratory

Induced Roll Separator

Typical applications include processing:

- Apatite
- Baddeleyite
- Barite
- Calcite
- Cassiterite
- Corundum
- Feldspar
- Flint Clay
- Glass Sands
- Kyanite
- Limestone

- Mica
- Mullite
- Nepheline Syenite
- Petalite
- Quartz
- Rutile
- Scheelite
- Silicon Carbide
- Spodumene
- Wollastonite
- Zircon

DATA SHEET

Electrostatic Separator

Typical applications include:

- Wire recycling:
 - Separate plastics from copper and aluminium
 - Separate copper and aluminium
- Secondary metal recycling
- Mineral processing (e.g. used in conjunction with highintensity magnetic separators in separating beach sands);
- Plastic recycling (e.g. shredded window frames separating aluminium from plastic);
- WEEE

For Wet Mineral Processing

Electromagnetic Filter

Typical applications include:

- Clean ceramic glazes
- Purify ceramic slips and bodies
- Remove magnetics and paramagnetic minerals (e.g. hematite, ilmenite, chromite) from mineral slurries including:
 - Silica sand;
 - Feldspar
 - Ball clay
 - Kaolin
 - Calcium Carbonate
 - Talc

PAGE 3 OF 4

Minerals Testing Laboratory

Example of a typical magnetic separation laboratory test and analysis

As part of the testing service we provide a mass balance and XRF chemical analysis of the separation process, a typical result can be seen below (XRD can be organised through a third party). In this instance data from a test programme on a Tin (Sn) ore is presented.

The Magnetic Disc Separator used for this application has six coupled outputs at differing magnetic intensity and a final non-magnetics output. Each of the outputs are analysed to assess the elemental constitution present. These outputs can have a commercial value or have high concentrations of unwanted elements. In this case there is a commercial value in outputs 1 & 2 which are ilmenite rich. In the case of unwanted elements outputs 3 & 4 take out all the thorium.

The table below shows the concentrations of the elements present in the original sample and the subsequent magnetic disc separator outputs:

		Tin	Iron	Thorium	Titanium	Tantalum	Niobium	Others
	% Mass	Sn	Fe	Th	Ti	Ta	Nb	
Input Feed		<mark>49%</mark>	6.6%	0.5%	6.7%	0.6%	1.6%	35%
Output 1	6.6%	2%	20%	-	<mark>26.6%</mark>	1.3%	6.6%	43%
Output 2	0.9%	-	16%	-	22.4%	2%	7%	53%
Output 3	10.9%	16%	-	<mark>4%</mark>	-	-	-	80%
Output 4	2.5%	18%	-	<mark>3%</mark>	-	-	-	79%
Output 5	6%	62%	-	-	-	1.4%	1.8%	35%
Output 6	2.2%	63%	3.3%	-	-	-	-	34%
Non-Magnetics Output	70%	<mark>63%</mark>	-	<mark>0%</mark>	-	0.4%	0.75%	

As seen in the results table above, the non-magnetics output is 63% Tin compared with the 49% in the input feed. There is no Thorium, making it more valuable and easier to ship globally. The Thorium being removed at outputs 3 & 4. The rich concentration of Titanium has a commercial value and is removed at outputs 1 & 2.

PAGE 4 OF 4